Plant form and function
Plant body
The plant body is made up of organs that can be organized into two major organ systems: a root system and a shoot system.[193] The root system anchors the plants into place. The roots themselves absorb water and minerals and store photosynthetic products. The shoot system is composed of stem, leaves, and flowers. The stems hold and orient the leaves to the sun, which allow the leaves to conduct photosynthesis. The flowers are shoots that have been modified for reproduction. Shoots are composed of phytomers, which are functional units that consist of a node carrying one or more leaves, internode, and one or more buds.
A plant body has two basic patterns (apical–basal and radial axes) that been established during embryogenesis.[193] Cells and tissues are arranged along the apical-basal axis from root to shoot whereas the three tissue systems (dermal, ground, and vascular) that make up a plant's body are arranged concentrically around its radial axis.[193] The dermal tissue system forms the epidermis (or outer covering) of a plant, which is usually a single cell layer that consists of cells that have differentiated into three specialized structures: stomata for gas exchange in leaves, trichomes (or leaf hair) for protection against insects and solar radiation, and root hairs for increased surface areas and absorption of water and nutrients. The ground tissue makes up virtually all the tissue that lies between the dermal and vascular tissues in the shoots and roots. It consists of three cell types: Parenchyma, collenchyma, and sclerenchyma cells. Finally, the vascular tissues are made up of two constituent tissues: xylem and phloem. The xylem is made up of two conducting cells called tracheids and vessel elements whereas the phloem is characterized by the presence of sieve tube elements and companion cells.[193]
Plant nutrition and transport
Like all other organisms, plants are primarily made up of water and other molecules containing elements that are essential to life.[194] The absence of specific nutrients (or essential elements), many of which have been identified in hydroponic experiments, can disrupt plant growth and reproduction. The majority of plants are able to obtain these nutrients from solutions that surrounds their roots in the soil.[194] Continuous leaching and harvesting of crops can deplete the soil of its nutrients, which can be restored with the use of fertilizers. Carnivorous plants such as Venus flytraps are able to obtain nutrients by digesting other arthropods whereas parasitic plants such as mistletoes can parasitize other plants for water and nutrients.
Plants need water to conduct photosynthesis, transport solutes between organs, cool their leaves by evaporation, and maintain internal pressures that support their bodies.[194] Water is able to diffuse in and out of plant cells by osmosis. The direction of water movement across a semipermeable membrane is determined by the water potential across that membrane.[194] Water is able to diffuse across a root cell's membrane through aquaporins whereas solutes are transported across by the membrane by ion channels and pumps. In vascular plants, water and solutes are able to enter the xylem, a vascular tissue, by way of an apoplast and symplast. Once in the xylem, the water and minerals are distributed upward by transpiration from the soil to the aerial parts of the plant.[167][194] In contrast, the phloem, another vascular tissue, distributes carbohydrates (e.g., sucrose) and other solutes such as hormones by translocation from a source (e.g., mature leaf or root) in which they were produced to a sink (e.g., root, flower, or developing fruit) in which they will be used and stored.[194] Sources and sinks can switch roles, depending on the amount of carbohydrates accumulated or mobilized for the nourishment of other organs.
Plant development
Plant development is regulated by environmental cues and the plant's own receptors, hormones, and genome.[195] Morever, they have several characteristics that allow them to obtain resources for growth and reproduction such as meristems, post-embryonic organ formation, and differential growth.
Development begins with a seed, which is an embryonic plant enclosed in a protective outer covering. Most plant seeds are usually dormant, a condition in which the seed's normal activity is suspended.[195] Seed dormancy may last may last weeks, months, years, and even centuries. Dormancy is broken once conditions are favorable for growth, and the seed will begin to sprout, a process called germination. Imbibition is the first step in germination, whereby water is absorbed by the seed. Once water is absorbed, the seed undergoes metabolic changes whereby enzymes are activated and RNA and proteins are synthesized. Once the seed germinates, it obtains carbohydrates, amino acids, and small lipids that serve as building blocks for its development. These monomers are obtained from the hydrolysis of starch, proteins, and lipids that are stored in either the cotyledons or endosperm. Germination is completed once embryonic roots called radicle have emerged from the seed coat. At this point, the developing plant is called a seedling and its growth is regulated by its own photoreceptor proteins and hormones.[195]
Unlike animals in which growth is determinate, i.e., ceases when the adult state is reached, plant growth is indeterminate as it is an open-ended process that could potentially be lifelong.[193] Plants grow in two ways: primary and secondary. In primary growth, the shoots and roots are formed and lengthened. The apical meristem produces the primary plant body, which can be found in all seed plants. During secondary growth, the thickness of the plant increases as the lateral meristem produces the secondary plant body, which can be found in woody eudicots such as trees and shrubs. Monocots do not go through secondary growth.[193] The plant body is generated by a hierarchy of meristems. The apical meristems in the root and shoot systems give rise to primary meristems (protoderm, ground meristem, and procambium), which in turn, give rise to the three tissue systems (dermal, ground, and vascular).
Plant reproduction
Most angiosperms (or flowering plants) engage in sexual reproduction.[196] Their flowers are organs that facilitate reproduction, usually by providing a mechanism for the union of sperm with eggs. Flowers may facilitate two types of pollination: self-pollination and cross-pollination. Self-pollination occurs when the pollen from the anther is deposited on the stigma of the same flower, or another flower on the same plant. Cross-pollination is the transfer of pollen from the anther of one flower to the stigma of another flower on a different individual of the same species. Self-pollination happened in flowers where the stamen and carpel mature at the same time, and are positioned so that the pollen can land on the flower's stigma. This pollination does not require an investment from the plant to provide nectar and pollen as food for pollinators.[197]
Plant responses
Like animals, plants produce hormones in one part of its body to signal cells in another part to respond. The ripening of fruit and loss of leaves in the winter are controlled in part by the production of the gas ethylene by the plant. Stress from water loss, changes in air chemistry, or crowding by other plants can lead to changes in the way a plant functions. These changes may be affected by genetic, chemical, and physical factors.
To function and survive, plants produce a wide array of chemical compounds not found in other organisms. Because they cannot move, plants must also defend themselves chemically from herbivores, pathogens and competition from other plants. They do this by producing toxins and foul-tasting or smelling chemicals. Other compounds defend plants against disease, permit survival during drought, and prepare plants for dormancy, while other compounds are used to attract pollinators or herbivores to spread ripe seeds.
Many plant organs contain different types of photoreceptor proteins, each of which reacts very specifically to certain wavelengths of light.[198] The photoreceptor proteins relay information such as whether it is day or night, duration of the day, intensity of light available, and the source of light. Shoots generally grow towards light, while roots grow away from it, responses known as phototropism and skototropism, respectively. They are brought about by light-sensitive pigments like phototropins and phytochromes and the plant hormone auxin.[199] Many flowering plants bloom at the appropriate time because of light-sensitive compounds that respond to the length of the night, a phenomenon known as photoperiodism.
In addition to light, plants can respond to other types of stimuli. For instance, plants can sense the direction of gravity to orient themselves correctly. They can respond to mechanical stimulation.[200]
Animal form and function
General features
The cells in each animal body are bathed in interstitial fluid, which make up the cell's environment. This fluid and all its characteristics (e.g., temperature, ionic composition) can be described as the animal's internal environment, which is in contrast to the external environment that encompasses the animal's outside world.[201] Animals can be classified as either regulators or conformers. Animals such as mammals and birds are regulators as they are able to maintain a constant internal environment such as body temperature despite their environments changing. These animals are also described as homeotherms as they exhibit thermoregulation by keeping their internal body temperature constant. In contrast, animals such as fishes and frogs are conformers as they adapt their internal environment (e.g., body temperature) to match their external environments. These animals are also described as poikilotherms or ectotherms as they allow their body temperatures to match their external environments. In terms of energy, regulation is more costly than conformity as an animal expands more energy to maintain a constant internal environment such as increasing its basal metabolic rate, which is the rate of energy consumption.[201] Similarly, homeothermy is more costly than poikilothermy. Homeostasis is the stability of an animal's internal environment, which is maintained by negative feedback loops.[201][202]
The body size of terrestrial animals vary across different species but their use of energy does not scale linearly according to their size.[201] Mice, for example, are able to consume three times more food than rabbits in proportion to their weights as the basal metabolic rate per unit weight in mice is greater than in rabbits.[201] Physical activity can also increase an animal's metabolic rate. When an animal runs, its metabolic rate increases linearly with speed.[201] However, the relationship is non-linear in animals that swim or fly. When a fish swims faster, it encounters greater water resistance and so its metabolic rates increases exponential.[201] Alternatively, the relationship of flight speeds and metabolic rates is U-shaped in birds.[201] At low flight speeds, a bird must maintain a high metabolic rates to remain airborne. As it speeds up its flight, its metabolic rate decreases with the aid of air rapidly flows over its wings. However, as it increases in its speed even further, its high metabolic rates rises again due to the increased effort associated with rapid flight speeds. Basal metabolic rates can be measured based on an animal's rate of heat production.
Water and salt balance
An animal's body fluids have three properties: osmotic pressure, ionic composition, and volume.[203] Osmotic pressures determine the direction of the diffusion of water (or osmosis), which moves from a region where osmotic pressure (total solute concentration) is low to a region where osmotic pressure (total solute concentration) is high. Aquatic animals are diverse with respect to their body fluid compositions and their environments. For example, most invertebrate animals in the ocean have body fluids that are isosmotic with seawater. In contrast, ocean bony fishes have body fluids that are hyposmotic to seawater. Finally, freshwater animals have body fluids that are hyperosmotic to fresh water. Typical ions that can be found in an animal's body fluids are sodium, potassium, calcium, and chloride. The volume of body fluids can be regulated by excretion. Vertebrate animals have kidneys, which are excretory organs made up of tiny tubular structures called nephrons, which make urine from blood plasma. The kidneys' primary function is to regulate the composition and volume of blood plasma by selectively removing material from the blood plasma itself. The ability of xeric animals such as kangaroo rats to minimize water loss by producing urine that is 10–20 times concentrated than their blood plasma allows them to adapt in desert environments that receive very little precipitation.[203]
Nutrition and digestion
Animals are heterotrophs as they feed on other organisms to obtain energy and organic compounds.[204] They are able to obtain food in three major ways such as targeting visible food objects, collecting tiny food particles, or depending on microbes for critical food needs. The amount of energy stored in food can be quantified based on the amount of heat (measured in calories or kilojoules) emitted when the food is burnt in the presence of oxygen. If an animal were to consume food that contains an excess amount of chemical energy, it will store most of that energy in the form of lipids for future use and some of that energy as glycogen for more immediate use (e.g., meeting the brain's energy needs).[204] The molecules in food are chemical building blocks that are needed for growth and development. These molecules include nutrients such as carbohydrates, fats, and proteins. Vitamins and minerals (e.g., calcium, magnesium, sodium, and phosphorus) are also essential. The digestive system, which typically consist of a tubular tract that extends from the mouth to the anus, is involved in the breakdown (or digestion) of food into small molecules as it travels down peristaltically through the gut lumen shortly after it has been ingested. These small food molecules are then absorbed into the blood from the lumen, where they are then distributed to the rest of the body as building blocks (e.g., amino acids) or sources of energy (e.g., glucose).[204]
In addition to their digestive tracts, vertebrate animals have accessory glands such as a liver and pancreas as part of their digestive systems.[204] The processing of food in these animals begins in the foregut, which includes the mouth, esophagus, and stomach. Mechanical digestion of food starts in the mouth with the esophagus serving as a passageway for food to reach the stomach, where it is stored and disintegrated (by the stomach's acid) for further processing. Upon leaving the stomach, food enters into the midgut, which is the first part of the intestine (or small intestine in mammals) and is the principal site of digestion and absorption. Food that does not get absorbed are stored as indigestible waste (or feces) in the hindgut, which is the second part of the intestine (or large intestine in mammals). The hindgut then completes the reabsorption of needed water and salt prior to eliminating the feces from the rectum.[204]
Breathing
The respiratory system consists of specific organs and structures used for gas exchange in animals. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals the respiratory surface is internalized as linings of the lungs.[205] Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles these are called alveoli, and in birds they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood.[206] These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing, which involves the muscles of respiration.
Circulation
A circulatory system usually consists of a muscular pump such as a heart, a fluid (blood), and system of blood vessels that deliver it.[207][208] Its principal function is to transport blood and other substances to and from cells and tissues. There are two types of circulatory systems: open and closed. In open circulatory systems, blood exits blood vessels as it circulates throughout the body whereas in closed circulatory system, blood is contained within the blood vessels as it circulates. Open circulatory systems can be observed in invertebrate animals such as arthropods (e.g., insects, spiders, and lobsters) whereas closed circulatory systems can be found in vertebrate animals such as fishes, amphibians, and mammals. Circulation in animals occur between two types of tissues: systemic tissues and breathing (or pulmonary) organs.[207] Systemic tissues are all the tissues and organs that make up an animal's body other than its breathing organs. Systemic tissues take up oxygen but adds carbon dioxide to the blood whereas a breathing organs takes up carbon dioxide but add oxygen to the blood.[209] In birds and mammals, the systemic and pulmonary systems are connected in series.
In the circulatory system, blood is important because it is the means by which oxygen, carbon dioxide, nutrients, hormones, agents of immune system, heat, wastes, and other commodities are transported.[207] In annelids such as earthworms and leeches, blood is propelled by peristaltic waves of contractions of the heart muscles that make up the blood vessels. Other animals such as crustaceans (e.g., crayfish and lobsters), have more than one heart to propel blood throughout their bodies. Vertebrate hearts are multichambered and are able to pump blood when their ventricles contract at each cardiac cycle, which propels blood through the blood vessels.[207] Although vertebrate hearts are myogenic, their rate of contraction (or heart rate) can be modulated by neural input from the body's autonomic nervous system.
Muscle and movement
In vertebrates, the muscular system consists of skeletal, smooth and cardiac muscles. It permits movement of the body, maintains posture and circulates blood throughout the body.[210] Together with the skeletal system, it forms the musculoskeletal system, which is responsible for the movement of vertebrate animals.[211] Skeletal muscle contractions are neurogenic as they require synaptic input from motor neurons. A single motor neuron is able to innervate multiple muscle fibers, thereby causing the fibers to contract at the same time. Once innervated, the protein filaments within each skeletal muscle fiber slide past each other to produce a contraction, which is explained by the sliding filament theory. The contraction produced can be described as a twitch, summation, or tetanus, depending on the frequency of action potentials. Unlike skeletal muscles, contractions of smooth and cardiac muscles are myogenic as they are initiated by the smooth or heart muscle cells themselves instead of a motor neuron. Nevertheless, the strength of their contractions can be modulated by input from the autonomic nervous system. The mechanisms of contraction are similar in all three muscle tissues.
In invertebrates such as earthworms and leeches, circular and longitudinal muscles cells form the body wall of these animals and are responsible for their movement.[212] In an earthworm that is moving through a soil, for example, contractions of circular and longitudinal muscles occur reciprocally while the coelomic fluid serves as a hydroskeleton by maintaining turgidity of the earthworm.[213] Other animals such as mollusks, and nematodes, possess obliquely striated muscles, which contain bands of thick and thin filaments that are arranged helically rather than transversely, like in vertebrate skeletal or cardiac muscles.[214] Advanced insects such as wasps, flies, bees, and beetles possess asynchronous muscles that constitute the flight muscles in these animals.[214] These flight muscles are often called fibrillar muscles because they contain myofibrils that are thick and conspicuous.[215]
Nervous system
Most multicellular animals have nervous systems[217] that allow them to sense from and respond to their environments. A nervous system is a network of cells that processes sensory information and generates behaviors. At the cellular level, the nervous system is defined by the presence of neurons, which are cells specialized to handle information.[218] They can transmit or receive information at sites of contacts called synapses.[218] More specifically, neurons can conduct nerve impulses (or action potentials) that travel along their thin fibers called axons, which can then be transmitted directly to a neighboring cell through electrical synapses or cause chemicals called neurotransmitters to be released at chemical synapses. According to the sodium theory, these action potentials can be generated by the increased permeability of the neuron's cell membrane to sodium ions.[219] Cells such as neurons or muscle cells may be excited or inhibited upon receiving a signal from another neuron. The connections between neurons can form neural pathways, neural circuits, and larger networks that generate an organism's perception of the world and determine its behavior. Along with neurons, the nervous system contains other specialized cells called glia or glial cells, which provide structural and metabolic support.
In vertebrates, the nervous system comprises the central nervous system (CNS), which includes the brain and spinal cord, and the peripheral nervous system (PNS), which consists of nerves that connect the CNS to every other part of the body. Nerves that transmit signals from the CNS are called motor nerves or efferent nerves, while those nerves that transmit information from the body to the CNS are called sensory nerves or afferent nerves. Spinal nerves are mixed nerves that serve both functions. The PNS is divided into three separate subsystems, the somatic, autonomic, and enteric nervous systems. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit directly from the brain are called cranial nerves while those exiting from the spinal cord are called spinal nerves.
Many animals have sense organs that can detect their environment. These sense organs contain sensory receptors, which are sensory neurons that convert stimuli into electrical signals.[220] Mechanoreceptors, for example, which can be found in skin, muscle, and hearing organs, generate action potentials in response to changes in pressures.[220][221] Photoreceptor cells such as rods and cones, which are part of the vertebrate retina, can respond to specific wavelengths of light.[220][221] Chemoreceptors detect chemicals in the mouth (taste) or in the air (smell).[221]
Hormonal control
Hormones are signaling molecules transported in the blood to distant organs to regulate their function.[222][223] Hormones are secreted by internal glands that are part of an animal's endocrine system. In vertebrates, the hypothalamus is the neural control center for all endocrine systems. In humans specifically, the major endocrine glands are the thyroid gland and the adrenal glands. Many other organs that are part of other body systems have secondary endocrine functions, including bone, kidneys, liver, heart and gonads. For example, kidneys secrete the endocrine hormone erythropoietin. Hormones can be amino acid complexes, steroids, eicosanoids, leukotrienes, or prostaglandins.[224] The endocrine system can be contrasted to both exocrine glands, which secrete hormones to the outside of the body, and paracrine signaling between cells over a relatively short distance. Endocrine glands have no ducts, are vascular, and commonly have intracellular vacuoles or granules that store their hormones. In contrast, exocrine glands, such as salivary glands, sweat glands, and glands within the gastrointestinal tract, tend to be much less vascular and have ducts or a hollow lumen.
Animal reproduction
Animals can reproduce in one of two ways: asexual and sexual. Nearly all animals engage in some form of sexual reproduction.[225] They produce haploid gametes by meiosis. The smaller, motile gametes are spermatozoa and the larger, non-motile gametes are ova.[226] These fuse to form zygotes,[227] which develop via mitosis into a hollow sphere, called a blastula. In sponges, blastula larvae swim to a new location, attach to the seabed, and develop into a new sponge.[228] In most other groups, the blastula undergoes more complicated rearrangement.[229] It first invaginates to form a gastrula with a digestive chamber and two separate germ layers, an external ectoderm and an internal endoderm.[230] In most cases, a third germ layer, the mesoderm, also develops between them.[231] These germ layers then differentiate to form tissues and organs.[232] Some animals are capable of asexual reproduction, which often results in a genetic clone of the parent. This may take place through fragmentation; budding, such as in Hydra and other cnidarians; or parthenogenesis, where fertile eggs are produced without mating, such as in aphids.[233][234]
Animal development
Animal development begins with the formation of a zygote that results from the fusion of a sperm and egg during fertilization.[235] The zygote undergoes a rapid multiple rounds of mitotic cell period of cell divisions called cleavage, which forms a ball of similar cells called a blastula. Gastrulation occurs, whereby morphogenetic movements convert the cell mass into a three germ layers that comprise the ectoderm, mesoderm and endoderm.
The end of gastrulation signals the beginning of organogenesis, whereby the three germ layers form the internal organs of the organism.[236] The cells of each of the three germ layers undergo differentiation, a process where less-specialized cells become more-specialized through the expression of a specific set of genes. Cellular differentiation is influenced by extracellular signals such as growth factors that are exchanged to adjacent cells, which is called juxtracrine signaling, or to neighboring cells over short distances, which is called paracrine signaling.[237][238] Intracellular signals consist of a cell signaling itself (autocrine signaling), also play a role in organ formation. These signaling pathways allows for cell rearrangement and ensures that organs form at specific sites within the organism.[236][239]
Immune system
The immune system is a network of biological processes that detects and responds to a wide variety of pathogens. Many species have two major subsystems of the immune system. The innate immune system provides a preconfigured response to broad groups of situations and stimuli. The adaptive immune system provides a tailored response to each stimulus by learning to recognize molecules it has previously encountered. Both use molecules and cells to perform their functions.
Nearly all organisms have some kind of immune system. Bacteria have a rudimentary immune system in the form of enzymes that protect against virus infections. Other basic immune mechanisms evolved in ancient plants and animals and remain in their modern descendants. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms, including the ability to adapt to recognize pathogens more efficiently. Adaptive (or acquired) immunity creates an immunological memory leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.
Animal behavior
Behaviors play a central a role in animals' interaction with each other and with their environment.[240] They are able to use their muscles to approach one another, vocalize, seek shelter, and migrate. An animal's nervous system activates and coordinates its behaviors. Fixed action patterns, for instance, are genetically determined and stereotyped behaviors that occur without learning.[240][241] These behaviors are under the control of the nervous system and can be quite elaborate.[240] Examples include the pecking of kelp gull chicks at the red dot on their mother's beak. Other behaviors that have emerged as a result of natural selection include foraging, mating, and altruism.[242] In addition to evolved behavior, animals have evolved the ability to learn by modifying their behaviors as a result of early individual experiences.[240]
Ecology
Ecology is the study of the distribution and abundance of life, the interaction between organisms and their environment.[243]
Ecosystems
The community of living (biotic) organisms in conjunction with the nonliving (abiotic) components (e.g., water, light, radiation, temperature, humidity, atmosphere, acidity, and soil) of their environment is called an ecosystem.[244][245][246] These biotic and abiotic components are linked together through nutrient cycles and energy flows.[247] Energy from the sun enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes.[248]
The Earth's physical environment is shaped by solar energy and topography.[246] The amount of solar energy input varies in space and time due to the spherical shape of the Earth and its axial tilt. Variation in solar energy input drives weather and climate patterns. Weather is the day-to-day temperature and precipitation activity, whereas climate is the long-term average of weather, typically averaged over a period of 30 years.[249][250] Variation in topography also produces environmental heterogeneity. On the windward side of a mountain, for example, air rises and cools, with water changing from gaseous to liquid or solid form, resulting in precipitation such as rain or snow.[246] As a result, wet environments allow for lush vegetation to grow. In contrast, conditions tend to be dry on the leeward side of a mountain due to the lack of precipitation as air descends and warms, and moisture remains as water vapor in the atmosphere. Temperature and precipitation are the main factors that shape terrestrial biomes.
Populations
A population is the number of organisms of the same species that occupy an area and reproduce from generation to generation.[251][252][253][254][255] Its abundance can be measured using population density, which is the number of individuals per unit area (e.g., land or tree) or volume (e.g., sea or air).[251] Given that it is usually impractical to count every individual within a large population to determine its size, population size can be estimated by multiplying population density by the area or volume. Population growth during short-term intervals can be determined using the population growth rate equation, which takes into consideration birth, death, and immigration rates. In the longer term, the exponential growth of a population tends to slow down as it reaches its carrying capacity, which can be modeled using the logistic equation.[252] The carrying capacity of an environment is the maximum population size of a species that can be sustained by that specific environment, given the food, habitat, water, and other resources that are available.[256] The carrying capacity of a population can be affected by changing environmental conditions such as changes in the availability resources and the cost of maintaining them. In human populations, new technologies such as the Green revolution have helped increase the Earth's carrying capacity for humans over time, which has stymied the attempted predictions of impending population decline, the famous of which was by Thomas Malthus in the 18th century.[251]
Communities
A community is a group of populations of two or more different species occupying the same geographical area at the same time. A biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species (intraspecific interactions), or of different species (interspecific interactions). These effects may be short-term, like pollination and predation, or long-term; both often strongly influence the evolution of the species involved. A long-term interaction is called a symbiosis. Symbioses range from mutualism, beneficial to both partners, to competition, harmful to both partners.[258]
Every species participates as a consumer, resource, or both in consumer–resource interactions, which form the core of food chains or food webs.[259] There are different trophic levels within any food web, with the lowest level being the primary producers (or autotrophs) such as plants and algae that convert energy and inorganic material into organic compounds, which can then be used by the rest of the community.[53][260][261] At the next level are the heterotrophs, which are the species that obtain energy by breaking apart organic compounds from other organisms.[259] Heterotrophs that consume plants are primary consumers (or herbivores) whereas heterotrophs that consume herbivores are secondary consumers (or carnivores). And those that eat secondary consumers are tertiary consumers and so on. Omnivorous heterotrophs are able to consume at multiple levels. Finally, there are decomposers that feed on the waste products or dead bodies of organisms.[259]
On average, the total amount of energy incorporated into the biomass of a trophic level per unit of time is about one-tenth of the energy of the trophic level that it consumes. Waste and dead material used by decomposers as well as heat lost from metabolism make up the other ninety percent of energy that is not consumed by the next trophic level.[262]
Biosphere
In the global ecosystem (or biosphere), matter exist as different interacting compartments, which can be biotic or abiotic as well as accessible or inaccessible, depending on their forms and locations.[264] For example, matter from terrestrial autotrophs are both biotic and accessible to other organisms whereas the matter in rocks and minerals are abiotic and inaccessible. A biogeochemical cycle is a pathway by which specific elements of matter are turned over or moved through the biotic (biosphere) and the abiotic (lithosphere, atmosphere, and hydrosphere) compartments of Earth. There are biogeochemical cycles for nitrogen, carbon, and water. In some cycles there are reservoirs where a substance remains or is sequestered for a long period of time.
Climate change includes both global warming driven by human-induced emissions of greenhouse gases and the resulting large-scale shifts in weather patterns. Though there have been previous periods of climatic change, since the mid-20th century humans have had an unprecedented impact on Earth's climate system and caused change on a global scale.[265] The largest driver of warming is the emission of greenhouse gases, of which more than 90% are carbon dioxide and methane.[266] Fossil fuel burning (coal, oil, and natural gas) for energy consumption is the main source of these emissions, with additional contributions from agriculture, deforestation, and manufacturing.[267] Temperature rise is accelerated or tempered by climate feedbacks, such as loss of sunlight-reflecting snow and ice cover, increased water vapor (a greenhouse gas itself), and changes to land and ocean carbon sinks.
Conservation
Conservation biology is the study of the conservation of Earth's biodiversity with the aim of protecting species, their habitats, and ecosystems from excessive rates of extinction and the erosion of biotic interactions.[268][269][270] It is concerned with factors that influence the maintenance, loss, and restoration of biodiversity and the science of sustaining evolutionary processes that engender genetic, population, species, and ecosystem diversity.[271][272][273][274] The concern stems from estimates suggesting that up to 50% of all species on the planet will disappear within the next 50 years,[275] which has contributed to poverty, starvation, and will reset the course of evolution on this planet.[276][277] Biodiversity affects the functioning of ecosystems, which provide a variety of services upon which people depend.
Conservation biologists research and educate on the trends of biodiversity loss, species extinctions, and the negative effect these are having on our capabilities to sustain the well-being of human society. Organizations and citizens are responding to the current biodiversity crisis through conservation action plans that direct research, monitoring, and education programs that engage concerns at local through global scales
Comments
Post a Comment